$$f\relax{x} = \int_{-\infty}^\infty \hat f(\xi)\ e^{2 \pi i \xi x} \ d\xi$$

## How to use KaTex with Lotus Docs link

KaTex support is controlled by the katex parameter in your front matter (line 10 below). Add and set it to true in your front matter to enable KaTex support for that page. This means KaTex support and resources are active only for pages that require it.

---
weight: 530
title: "KaTex"
description: "Fast Tex math rendering for your Lotus Docs site"
icon: "function"
date: "2023-08-26T20:43:23+01:00"
lastmod: "2023-08-26T20:43:23+01:00"
draft: true
toc: true
katex: true
---


## Writing LaTex in Markdown link

Equations can be displayed either in block level or inline.

Type an equation using double dollar signs as the delimiter:

  $$\int \frac{1}{x} dx = \ln \left| x \right| + C$$


renders as:

$$\int \frac{1}{x} dx = \ln \left| x \right| + C$$

Type an equation using single dollar signs as the delimiter:

  $\int \frac{1}{x} dx = \ln \left| x \right| + C$


renders as:

$\int \frac{1}{x} dx = \ln \left| x \right| + C$

As a consequence of Hugo rendering to HTML before KaTex renders to math1, there are some instances in which the KaTex equation syntax requires heavy escaping or alterations before rendering correctly. This can be time-consuming and frustrating (especially for inexperienced users). To avoid this, a KaTex Shortcode is available.

  {{< katex >}}
$$\begin{array} {lcl} L(p,w_i) &=& \dfrac{1}{N}\Sigma_{i=1}^N(\underbrace{f_r(x_2 \rightarrow x_1 \rightarrow x_0)G(x_1 \longleftrightarrow x_2)f_r(x_3 \rightarrow x_2 \rightarrow x_1)}_{sample\, radiance\, evaluation\, in\, stage2} \\\\\\ &=& \prod_{i=3}^{k-1}(\underbrace{\dfrac{f_r(x_{i+1} \rightarrow x_i \rightarrow x_{i-1})G(x_i \longleftrightarrow x_{i-1})}{p_a(x_{i-1})}}_{stored\,in\,vertex\, during\,light\, path\, tracing\, in\, stage1})\dfrac{G(x_k \longleftrightarrow x_{k-1})L_e(x_k \rightarrow x_{k-1})}{p_a(x_{k-1})p_a(x_k)}) \end{array}$$
{{< /katex >}}


renders as:

$$\begin{array} {lcl} L(p,w_i) &=& \dfrac{1}{N}\Sigma_{i=1}^N(\underbrace{f_r(x_2 \rightarrow x_1 \rightarrow x_0)G(x_1 \longleftrightarrow x_2)f_r(x_3 \rightarrow x_2 \rightarrow x_1)}_{sample\, radiance\, evaluation\, in\, stage2} \\\\\\ &=& \prod_{i=3}^{k-1}(\underbrace{\dfrac{f_r(x_{i+1} \rightarrow x_i \rightarrow x_{i-1})G(x_i \longleftrightarrow x_{i-1})}{p_a(x_{i-1})}}_{stored\,in\,vertex\, during\,light\, path\, tracing\, in\, stage1})\dfrac{G(x_k \longleftrightarrow x_{k-1})L_e(x_k \rightarrow x_{k-1})}{p_a(x_{k-1})p_a(x_k)}) \end{array}$$

Last updated 02 Oct 2023, 21:49 +0100 . history